

Development Institute

Product Development Process

Technology Development Institute 510 McCall Road Manhattan, Kansas 66502 www.ksu.edu/tdi

Background...

- Unit in the K-State College of Engineering
- Established in 1985
- Since 1995 Over 2,500 development projects with over 600 clients
- Off campus 22,000 sq. ft. facility
 - Half office & half prototyping shop facility
- 10+ full-time staff members
- Primary focus is to provide technical support in an effort to develop new technologies, grow companies and communities

• Where do you start?

- Consumer Research
 - Is there a problem?
 - How are they solving it today?
 - What does that cost them and is it painful?
 - Where do people shop for these products?
 - How much are they paying to address the issue?
 - Conducting surveys are a good way to gather information
 - Make sure the questions are structured properly to gather information and not just confirm opinions
 - How much would you pay vs. what would you expect the price to be
 - Products must have market demand to be successful

• Where do you start?

- Competitive Product Research
 - It's not just does this exists what else solves this problem?
 - Just because your idea is different doesn't make it better
 - Where do people shop for these types of products?
 - Websites, Amazon, WalMart, Target, etc ...
 - Internet searches there is lots of stuff out there!!

- Intellectual Property Research
 - Trademarks
 - <u>www.uspto.gov</u>
 - Pay attention to Classification Codes
 - Raven Example
 - Patents
 - Google Patents <u>https://patents.google.com/</u>
 - Enter search terms as you would normally search the web
 - Patent Searches
 - Patent Citations
 - Cited By
 - Similar Documents
 - Claims Infringement vs. patentability

- Document everything you have found in a written document that you can pull out later if needed.
 - What was the customer feedback
 - What were the competitive products, where were they sold, price points
 - Patents, Applications, Issued, Expired
- All of this information should be used to develop a product specification that is the guide for concept development.

Development Institute

•	ldentify the
	problem/need

Project

Scope

- What are the constraints?
- What is the timeline and budget?
- What is needed to complete the project?

Research

- What has already been developed?
- Brainstorm lots of basic ideas

Concept

Generation

- Test/evaluate general concepts
- Select one or two concepts to move forward with
- Generate detailed models and plans

Design and

Detail

- Complete various calculations and further research to prove out design
- Build first prototype(s)

Build and

Test

- Test for functionality and other metrics
- Improve design based on testing and other feedback

6

Iterate

<u>Hunting Product – Remote Scent Dispenser</u>

Project Scope

- Identify the problem/need
- What are the constraints?
- What is the timeline and budget?

Project Scope

- Identify the problem/need
- What are the constraints?
- What is the timeline and budget?

<u>Hunting Product – Remote Scent Dispenser</u>

- Remotely triggered and/or on a timer
- Works with current scent packaging
- Battery powered

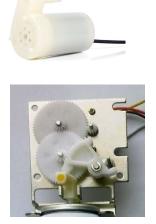
Project Scope

- Identify the problem/need
- What are the constraints?
- What is the timeline and budget?

<u>Hunting Product – Remote Scent Dispenser</u>

- Remotely triggered and/or on a timer
- Works with current scent packaging
- Battery powered
- Low cost of goods for production design
- Production ready design in 9 months

Research


- What is needed to complete the project?
- What has already been developed?

Parts needed to function

- · Plastic injection molded housing
- Actuator for dispensing scent
- IC board for remote and/or timer

Research

2

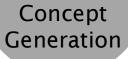
- What is needed to complete the project?
- What has already been developed?

What else dispenses scent?

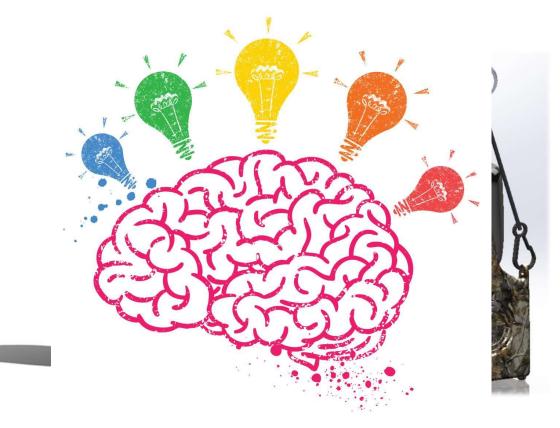
- Household air fresheners
 - Sprays
 - Diffusers
 - Heated oil/wax

What else dispenses scent?

- Household air fresheners
 - Sprays
 - Diffusers
 - Heated oil/wax
- Hunting scent dispensers



Technology Development Institute


Research

2

- What is needed to complete the project?
- What has already been developed?

- Brainstorm lots of basic ideas
- Test/evaluate general concepts
- Select one or two concepts to move forward with

Concept Generation

2

- Brainstorm lots of basic ideas
- Test/evaluate general concepts
- Select one or two concepts to move forward with

Concept Generation

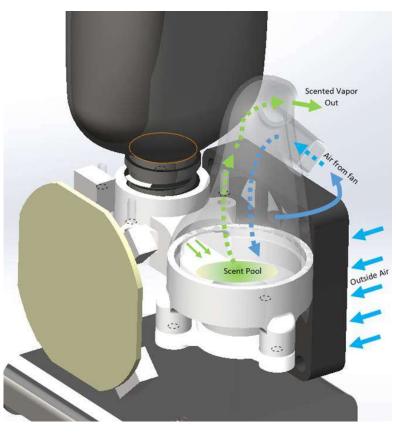
R

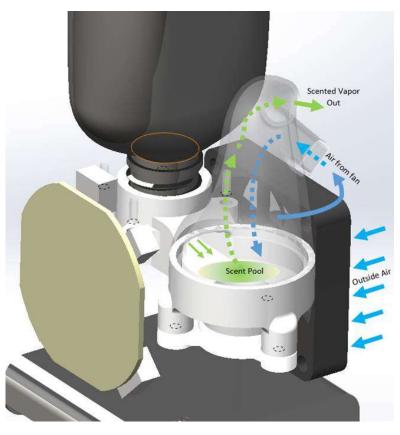
- Brainstorm lots of basic ideas
- Test/evaluate general concepts
- Select one or two concepts to move forward with

Concept Generation

2

- Brainstorm lots of basic ideas
- Test/evaluate general concepts
- Select one or two concepts to move forward with




- Generate detailed models and plans
- Complete various calculations and further research to prove out design

- Generate detailed models and plans
- Complete various calculations and further research to prove out design

Build and Test

5

- Build first prototype(s)
- Test for functionality and other metrics

Build and Test

5

- Build first prototype(s)
- Test for functionality and other metrics

KANSAS STATE

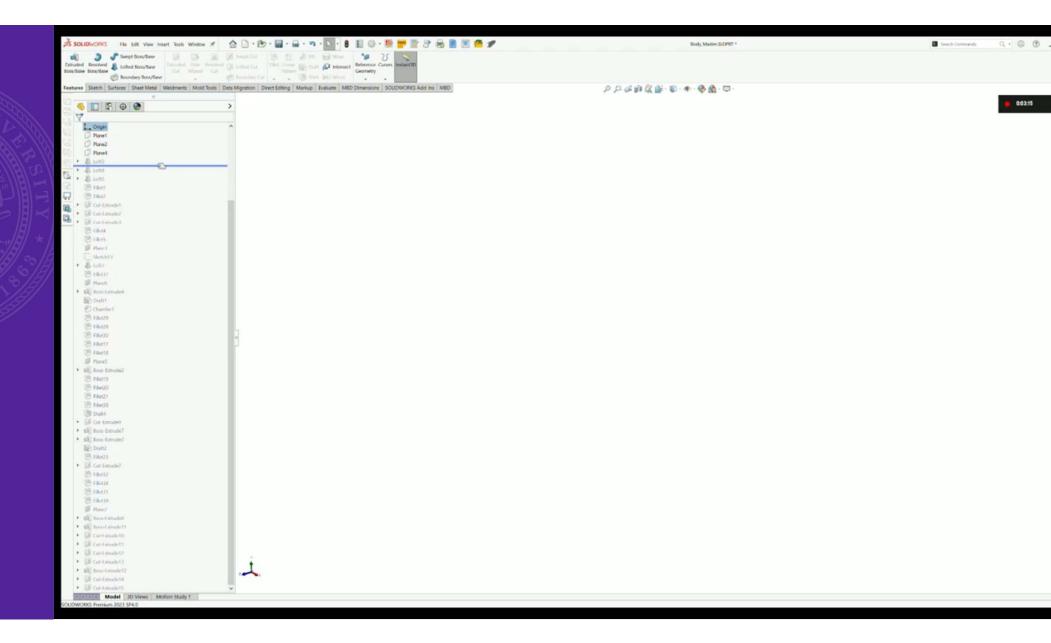
Iterate

6

 Improve design based on testing and other feedback

CAD Modeling

CAD Modeling


CAD (Computer Aided Design)

- Visual and dimensional representation of parts and assemblies
- Allows for quick changes -
- Good communication tool between groups
- Virtual simulations and calculations can validate designs BEFORE physical testing.

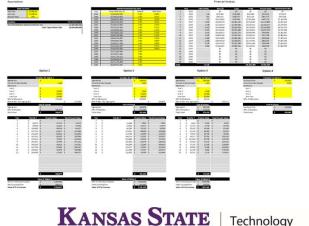
Development Institute

Now that we have a product...

- What's Next?
 - Licensing vs. Manufacturing
- Licensing requires creation of some form of Intellectual Property
 - This is usually in the form of a utility patent, but may be design patent, copyright, trademark or even a trade secret
 - Conceptual model to export drawings from is enough to file a patent
 - Prior art becomes very important here
 - Difficult to accomplish
- Manufacturing does not require IP, but does require a business plan, marketing and sales plan, detailed engineering drawings, part specifications, BOM and people
 - Expensive
 - Time consuming
 - Much higher returns

Licensing

- The goal behind licensing is to create IP and then offer that to a manufacturer under a license agreement where they pay a royalty on the sale of each unit
- Draft a disclosure, create patent drawings & find a good attorney to draft the claims and file the patent
 - Provisional Patent, Utility Patent, Design Patent
- Terms of the license very widely
 - Exclusive vs. Non
 - Field of Use
 - Signing Fee
 - Patent Costs
 - Minimums
 - Royalty Rates typically range 3-8% (revenue) depending on industry
- Difficult to accomplish
 - Right company, Right time, Right dollar amount
 - 9 out of 10 licensing deals fail to find a home



Licensing

How do you go about licensing?

- Identify target companies with distribution channels needed to sell the product
- Conduct market research to determine the size and potential of the market
- Generate a "Technology Licensing Profile"
 - One pager that explains the product, the market, the benefits and that you are seeking to license
- Valuation Model Spreadsheet used to determine how much the IP is worth
- Term Sheet what are you asking for?

UNIVERSITY

Development Institute

Business Planning

- Manufacturing is expensive and typically requires capital to be raised
- If you need to raise capital a business plan is going to be required to illustrate to investors how you plan to manufacture product, sell and generate revenue
- Financials are also needed to show how much investment is required
- Determine exit strategy for investors
- Kansas Small Business Development Centers provide assistance in drafting the business plans

Marketing and Sales

- This is the single most important aspect of planning and something that you cannot control
- "Selling it on my website" is not a sales and marketing plan
 - How are you driving traffic to the website? How much does that cost?
- Distributors vs. direct sales?
- Pricing
- Sales projections and cash flow

Manufacturing

- It really has to work and be able to be produced!
- Design for manufacturability comes into play
- Tooling what is required to put the project into production
- Machines In-house vs. toll processing
- Supply chain development
 - Landing correct materials at the correct time
 - Outbound shipping to customers
- Do you produce in the US or overseas?
- Once everything is lined up, time to Launch

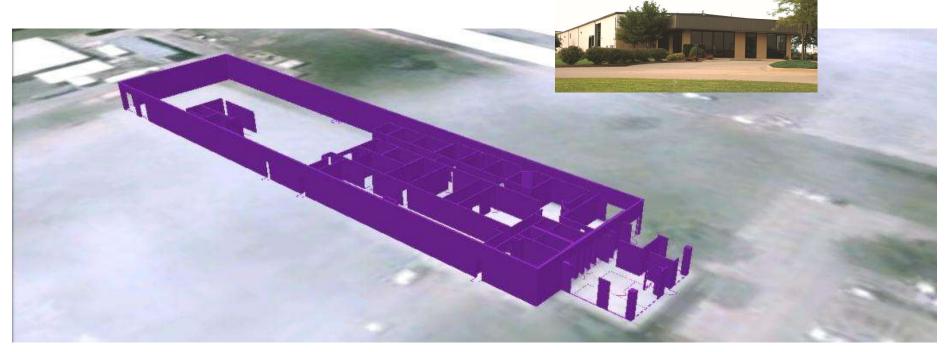
Product Scale-Up

- EXPENSIVE!
- Tooling cost for injection molding can easily cost \$50k \$100k
- Packaging tooling costs
- Labor
- Facilities
- Inventory costs

Other Resources in Kansas

- KDOC <u>Proof of Concept Grant</u>
 - Up to \$25k to design and prototype a new idea
- TDI Innovation Funds provided through K-State 105 funding
 - 50/50 matching grant up to \$25k to help offset the cost of development for a new product or technology for Kansas based businesses
- KDOC <u>Small Business R&D Acceleration Grants</u>
 - 50/50 matching grant to cover costs of doing research with higher education institutions up to \$25k
- KDOC <u>Angel Investor Tax Credits</u>
 - Obtain Kansas tax credits to assist in raising capital from angel investors
- Network Kansas GrowKS Program
 - GrowKS loan and equity program \$69 million
- Numerous other local programs designed to support the development of new products & technologies
 - Talk with local economical development representatives

Questions & Thank You!!


Technology Development Institute

Technology Development Institute

510 McCall Road Manhattan, Kansas 66502-5034 www.ksu.edu/tdi Phone: 785-532-7044

TDI Development Facilities

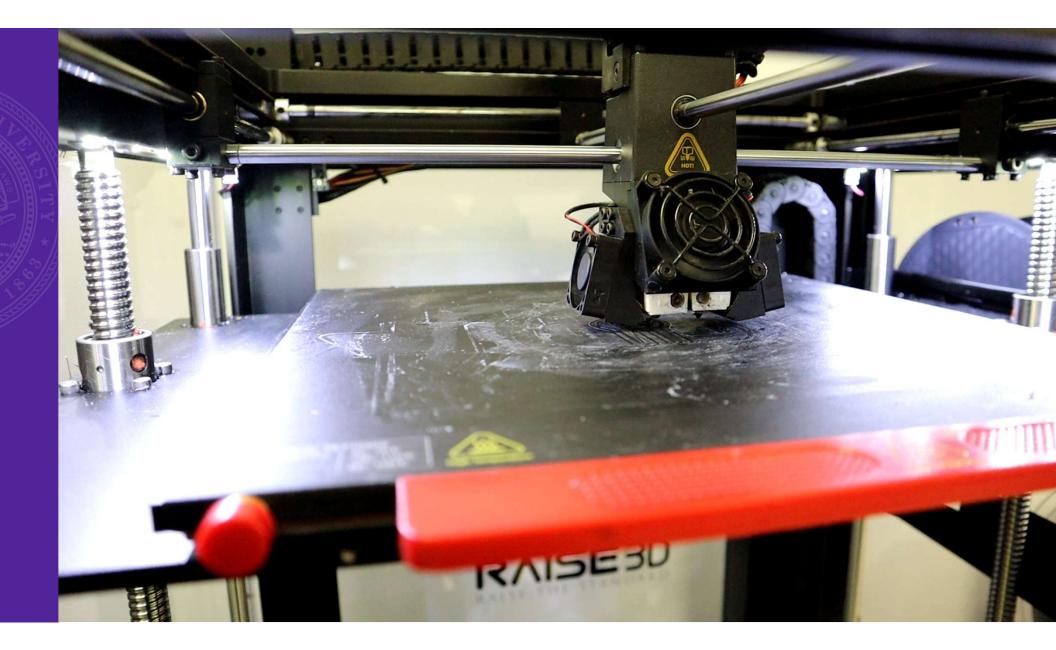
- 22,000 sq. ft. Off-Campus Facility
- 11,000 sq. ft. Project Offices/Meeting Space
- 11,000 sq. ft. Prototyping Shop

TDI Development Facilities

- 22,000 sq. ft. Off-Campus Facility
- 11,000 sq. ft. Project Offices/Meeting Space
- 11,000 sq. ft. Prototyping Shop

SMALL		MEDIUM	LARGE	
PROJECT SPACE		PROJECT SPACE	PROJECT SPACE	
VERTICAL MILLS	LATHE	S WATER SAN	FIBER LASER	WELDING/ BLASTING

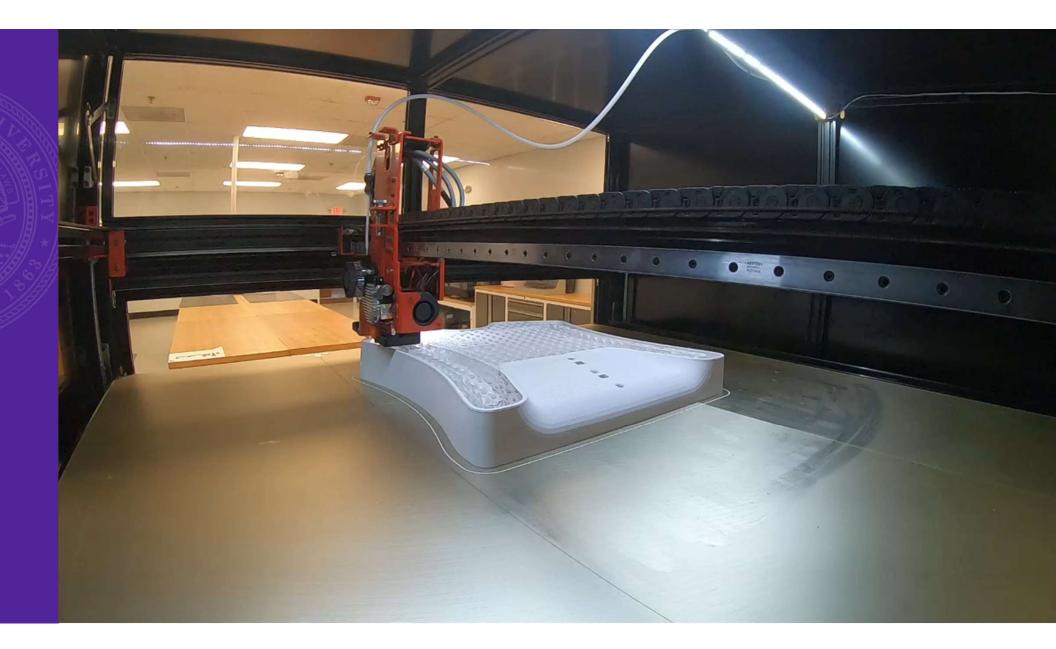
KANSAS STATE

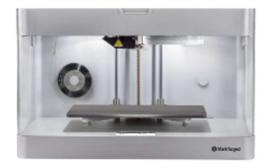


FDM (Fused Deposition Modeling)

- Pushes melted plastic through a nozzle
- Material comes on a spool
- Easy to use and cheap

KANSAS STATE




Large Format FDM

- Works the same as smaller machines

KANSAS STATE

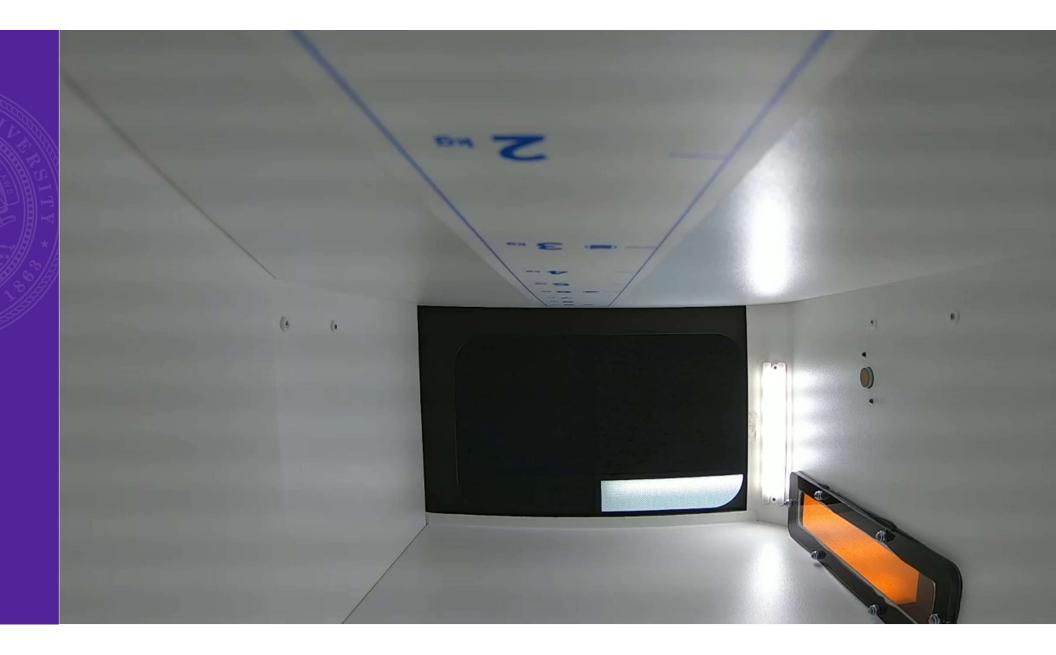
Continuous Carbon Fiber

- Very similar to FDM printing
- Additional nozzle "irons" down a continuous fiber within each layer
- Can make parts that are as strong as aluminum

KANSAS STATETechnologyU N I V E R S I T YDevelopment Institute

SLS (Selective Laser Sintering)

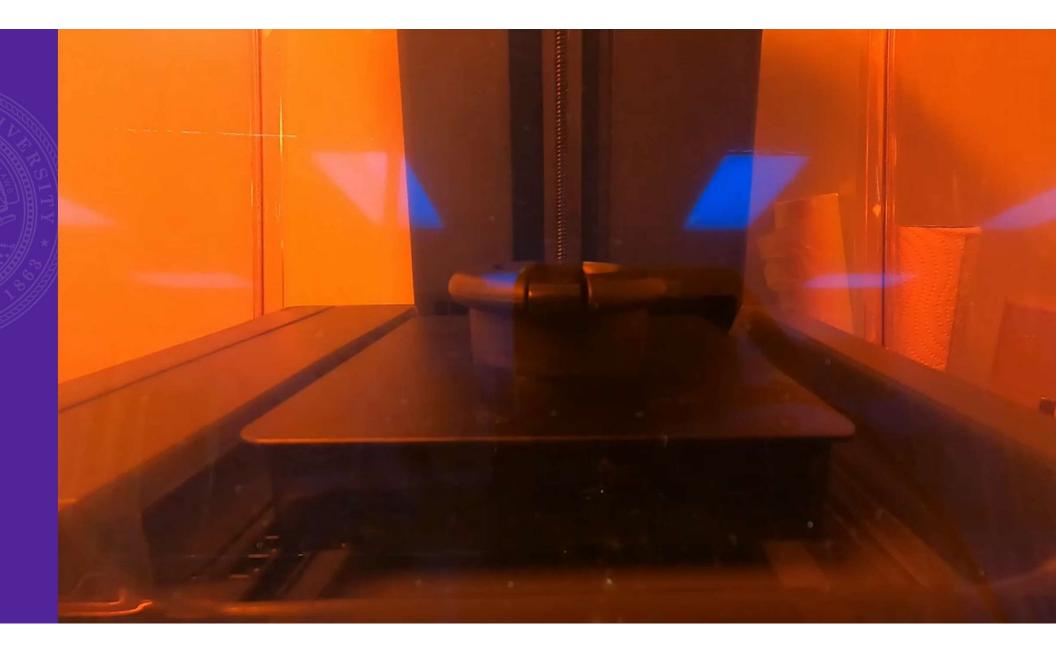
- Melts part profiles on a flat layer of fine plastic powder and repeats with a new layer of powder
- No supports required to hold up part while printing
- Medium to high detail with good performance
- Post processing requires powder recovery station



KANSAS STATETechnologyU N I V E R S I T YDevelopment Institute

SLA (Stereolithography)

- Liquid resin is in a vat on the bottom and is cured layer by layer using a UV laser
- High detail and functional parts
- More expensive than FDM



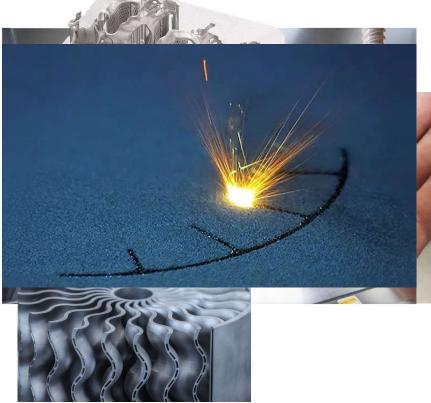
KANSAS STATE

<u>Polyjet</u>

- Deposits liquid resin from a print head and uses UV light to cure each layer
- Can print multiple materials and colors all at once
- High Detail and smooth finish
- Expensive material and operating costs

 KANSAS STATE
 Technology

 U N I V E R S I T Y
 Development Institute



Plastic 3D Printing Comparison

	FDM	CCF	SLA	SLS	Polyjet
Print Speed	¢	e	♀ / ∂	1	A
Cost	\$	\$\$\$	\$\$	\$\$\$	\$\$\$\$
Part Size			• = = =	• • •	
Surface Finish	*	**	***	**	$\star\star\star$
Functional, End use parts	**	***	***	$\star\star\star$	*
Flexible Material Option	 	×	\checkmark	×	\checkmark
Multi-material/color print	×	×	×	×	\checkmark

KANSAS STATE

Metal 3D Printing

Laser Powder Bed Fusion (LPBF)

- Uses a high powered laser to melt together metal powder layer by layer
- Unused powder is cleaned off of parts and reused
- Allows for complex shapes and internal structures not possible using traditional manufacturing

Metal 3D Printing

Direct Energy Deposition (DED)

- Uses lasers an/or electricity to heat metal material depositing it in a bead (similar to welding)
- Can be mounted on a robot, CNC machine, or other frames
- Useful for making large parts

Development Institute

<u>Fiber Laser</u>

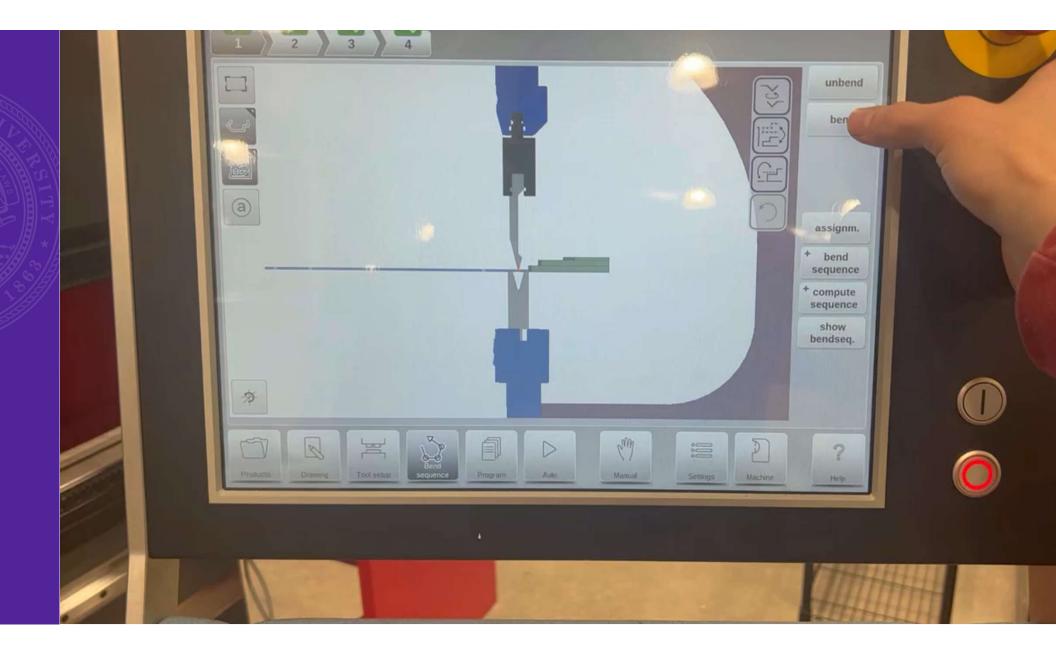
- Uses a high powered laser and assist gas to cut sheet metal
- Cuts plain steel, stainless steel, and aluminum sheets
- High precision and fast cutting
- Tube function cuts high precision profiles in tube stock

KANSAS STATE UNIVERSITY Development Institute

<u>Waterjet</u>

- Uses high pressure water and garnet to cut various materials.
- Cuts steels, aluminum, plastic, rubber, stone, etc.
- Slower than a laser, but more precise than using a jigsaw or other hand tools

UNIVERSITY



Press Brake

- Bends sheet metal at precise lengths and angles
- Various supports and stops on the machine help position the part for bending

CNC Machines

- Parts are positioned in machine workspace and cut using various bits and tools
- Vertical mill, 5-axis mill, and a lathe are common machine types

	Operation: MEM	😰 🕢 😵 [14:32:28]	Activ	ve Program 🔶	
R OFF	NET INC N800 G3 X2.876 Y.4275 I.1875 J0 N810 X2.4485 Y0.10.J.4275 N810 X2.4485 Y0.10.J.4275 N220 X2.876 Y.4275 I.4275 J0.; N830 X3.3035 Y0.10.J.4275; N840 X2.876 Y.4275 I.4275 J0.; N850 X2.6885 Y.24 10.J.4275; N850 X2.6885 Y.24 10.J.1875; N860 G1 G40 Y 325; N870 G0 Z1.; N890 X1.6255; N890 Z1; N900 G1 Z-1.**55 F100; N910 G41 D2. 4 F50; N920 G3 X1.479 Y.4275 I.1875 J0; N930 X1.011 0.10.J.4275; N940 X1.47 4275 I.4275 J0.; N950 X1.8655 Y0.10.J.4275; N960 X1.4 Y.4275 I.4275 J0.; N970 X1.2 J5 Y.24 10.J.1875; N980 G1 G40 Y.0525; N990 G0 Z1;; N1000 X.1875; N1010 Z1;	3.: •	Active Codes G03 CCW Circular Fe G90 Absolute Position G41 2D Cutter. Comp Left G80 Cycle Cancel G54 Work Offset #54	Active Tool Tool: 3 Offset: 3 Type: End Mill Tool Group: Max Load: 31 Life: 100% Next Tool Pocket: 25 Tool #: 31	Coolant On PCool 1/1 0/1
	N1020 G1 Z-1.0455 F100.; N1030 G41 D3 Y.24 F50.; N1040 G3 X0, Y.4275 I-1875 J0.; N1050 X-4275 Y0.10, J-4275; N1060 X0, Y-4275 I,4275 J0.; N1070 Y 4275 Y0.10, 14275;		Positions Program G54 G4	12 LI2	And Counters

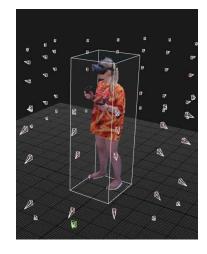
KANSAS STATE

CMM Arm and Laser Scanner

- Use probe or laser to measure and inspect parts
- Laser is useful for complex or organic geometry
- Useful for scanning all sizes of parts

Wide Area Scanner

- Gathers point cloud and picture data all at once (similar to a Google car)
- Useful for capturing layouts of large objects, buildings, and outdoor areas



Other technologies

- Handheld scanners
- Desktop setups
- Terrestrial Lasers
- Photogrammetry*

